If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2+8t^2=15^2
We move all terms to the left:
10t^2+8t^2-(15^2)=0
We add all the numbers together, and all the variables
18t^2-225=0
a = 18; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·18·(-225)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{2}}{2*18}=\frac{0-90\sqrt{2}}{36} =-\frac{90\sqrt{2}}{36} =-\frac{5\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{2}}{2*18}=\frac{0+90\sqrt{2}}{36} =\frac{90\sqrt{2}}{36} =\frac{5\sqrt{2}}{2} $
| 5-(3x+3)=11+3(x+3) | | 11y-38=2(4y-7) | | 5/7-6/7=2-4x | | 6(5x−2)=23 | | 5a-2(a-5)=25 | | x^2+8x-12=-30 | | 7x-4=x+9 | | 4^(x+2)-2^(2x+1)=112 | | 10x+20=129 | | 200x=500,000 | | P(x)=200x-500,000, | | X²+18x+15=0 | | 10x+27−5x−46=32+3x−19 | | a+2a-18+90=180 | | f^2-(4f-2f²-8)=2f^2+4f-8 | | 1.5x–2.5=4.5 | | 3a/7+5a=2 | | (x+40)°=(3x-20)° | | 45/5+5y/6=180 | | 5x5=17+ | | 3x=52/25 | | 3x=52/28 | | X+4=12x+43/35 | | 700x=895x | | 25x=0,1x^2 | | 6y-5=3y+13 | | 2/p+3/p=15 | | 3a-6=-24 | | X/3+y=180,y=20 | | 16x-28=-12x+9+47 | | 49x+56=12x+20+221 | | 3y+32=9y |